A New Approach to Treating Brain Disorders: Reprogramming Neural Circuits

News

If you want a glimpse into the future, to know where brain research is taking us, just ask Dr. Kay M. Tye. A NARSAD Young Investigator grantee in 2013, Dr. Tye in the eight years since earning her Ph.D. in neuroscience at the Massachusetts Institute of Technology has won a bevy of top fellowships including the Society for Neuroscience Young Investigator Award as well as the NIH Director’s New Innovator Award. She has been named one of the world’s “35 Top Innovators Under 35” by Technology Review. And she has secured an assistant professorship in the Department of Brain and Cognitive Sciences at MIT’s Picower Institute for Learning and Memory. This past year Dr. Tye was the recipient of the Foundation’s prestigious Freedman Award, and, separately, was named a member of the Foundation’s Scientific Council.

Dr. Tye speaks with infectious enthusiasm about the subject at the focus of her research: the neural circuits of emotions. Although hard to describe in rigorous scientific terms, emotions come in essentially two flavors, she says: pleasure and pain. So much of behavior has at its root the pursuit of one and the avoidance of the other. And yet, “even during the years I was in graduate school and just getting into neuroscience, most people weren’t very confident that ‘emotion’ was something that you could come up with a mechanistic explanation for.” View Original Article»

Brain circuit enables split-second decisions when cues conflict

News

MIT-Competing-Sig-1_0

New findings shed light on how we quickly assess risks and rewards before acting.

When animals hunt or forage for food, they must constantly weigh whether the chance of a meal is worth the risk of being spotted by a predator. The same conflict between cost and benefit is at the heart of many of the decisions humans make on a daily basis.

The ability to instantly consider contradictory information from the environment and decide how to act is essential for survival. It’s also a key feature of mental health. Yet despite its importance, very little is known about the connections in the brain that give us the ability to make these split second decisions.

Now, in a paper published in the journal Nature Neuroscience, researchers at the Picower Institute for Learning and Memory at MIT reveal the circuit in the brain that is critical for governing how we respond to conflicting environmental cues. View Original Article»

Interstellate: Celebrating the the beauty of neuroscience

News

interstellate-cover-mit-00

Caitlin Vander Weele, a graduate student in brain and cognitive sciences, launches a collaborative neuro-art pictorial magazine.

“Scientists take beautiful images of the brain every day, and for the most part no one gets to see them,” says Caitlin Vander Weele, a graduate student in the MIT Department of Brain and Cognitive Sciences.

“Experiments fail all the time and the images just get buried. People don’t really get to see that side of science. At the end of the day, they aren’t really failed experiments. They help us generate better methods and come up with better hypotheses.”

A fifth-year graduate student in the lab of Assistant Professor Kay Tye, Vander Weele recently launched Interstellate, a neuro-art pictorial magazine, to share these images with the world. View Original Article»

Kay Tye Receives the Society for Neuroscience Young Investigator Award

News

SfN Young Investigator Award

Picower Neuroscientist recognized for her work on emotional circuitry of the brain.

On Nov. 5, the Society for Neuroscience named Kay M. Tye the recipient of its Young Investigator Award, which recognizes outstanding achievements and contributions by a young neuroscientist. Tye, assistant professor of brain and cognitive sciences at MIT and a member of the Picower Institute for Learning and Memory, studies the neural circuitry and activity responsible for infusing experiences with either positive or negative emotions.

“She has profoundly changed the field of neuroscience both by initiating a new circuit-based approach to study how the brain works and by bringing to light an entirely new thinking on how the brain processes emotional value,” says Li-Huei Tsai, director of the Picower Institute for Learning and Memory. “Her vision is original, innovative, and transformative.” View Original Article»

Kay Tye Receives Young Investigator Award

News

WASHINGTON, DC — The Society for Neuroscience (SfN) will present the Young Investigator Award to Kay Tye, PhD, of the Massachusetts Institute of Technology. Established in 1983, the $15,000 award recognizes the outstanding achievements and contributions of a young neuroscientist who has recently received an advanced professional degree. The award will be presented during Neuroscience 2016, SfN’s annual meeting and the world’s largest source of emerging news about brain science and health.

“Dr. Tye’s work has already led to new and fundamental understanding of how neural circuitry that interprets pleasure and pain can feed into affective disorders and addiction,” SfN President Hollis Cline said. “Dr. Tye is poised to lead her field for years to come.”  View Original Article»

Researchers Confront an Epidemic of Loneliness

News

06Loneliness-Cover-master768-v2

BLACKPOOL, England — The woman on the other end of the phone spoke lightheartedly of spring and of her 81st birthday the previous week.

“Who did you celebrate with, Beryl?” asked Alison, whose job was to offer a kind ear.

“No one, I…”

And with that, Beryl’s cheer turned to despair.

Her voice began to quaver as she acknowledged that she had been alone at home not just on her birthday, but for days and days. The telephone conversation was the first time she had spoken in more than a week.

About 10,000 similar calls come in weekly to an unassuming office building in this seaside town at the northwest reaches of England, which houses The Silver Line Helpline, a 24-hour call center for older adults seeking to fill a basic need: contact with other people. View Original Article»

New Evidence for the Necessity of Loneliness

News

Loneliness_1000x460

A specific set of neurons deep in the brain may motivate us to seek company, holding social species together.

As social animals, we depend on others for survival. Our communities provide mutual aid and protection, helping humanity to endure and thrive. “We have survived as a species not because we’re fast or strong or have natural weapons in our fingertips, but because of social protection,” saidJohn Cacioppo, the director of the Center for Cognitive and Social Neuroscience at the University of Chicago. Early humans, for example, could take down large mammals only by hunting in groups. “Our strength is our ability to communicate and work together,” he said.

But how did these powerful communities come to exist in the first place? Cacioppo proposes that the root of social ties lies in their opposite — loneliness. According to his theory, the pain of being alone motivates us to seek the safety of companionship, which in turn benefits the species by encouraging group cooperation and protection. Loneliness persists because it provides an essential evolutionary benefit for social animals. Like thirst, hunger or pain, loneliness is an aversive state that animals seek to resolve, improving their long-term survival. View Original Article»

Questions for Kay Tye: How loneliness drives social behavior

News

Spectrum News

Most people are wired to seek pleasure in the company of others, but individuals with autism appear to lack this drive. The chemical messenger dopamine may rouse the brain’s reward center differently in autism, dulling the pleasure from social interaction.

A new study suggests that social contact is more than just a reward — it may also serve to block bad feelings.

The findings raise the intriguing possibility that people with autism don’t recognize loneliness as a bad feeling. As a result, they are less driven to seek out social interaction as a remedy. View Original Article»

Neuroscientists pinpoint brain cells that represent loneliness

News

Contact with other humans isn’t just psychologically beneficial: it also provides us with evolutionary advantages. Historically, it was easier to find food and shelter as a group than it was alone, and so an instinct to seek comfort in groups has been deeply ingrained. When we’re deprived of this contact, we often become lonely, distressed and miserable.

Now, a team of MIT neuroscientists has identified the region of the brain that represents these feelings of loneliness — the dorsal raphe nucleus (DRN). The DRN, near the back of the brain, hosts a cluster of cells that the team say is responsible for generating increased sociability after periods of isolation. View Original Article»

Pinpointing loneliness in the brain

News, Press Releases

MIT-Lonely-Neurons_0

Scientists identify cells that represent feelings of isolation.

Humans, like all social animals, have a fundamental need for contact with others. This deeply ingrained instinct helps us to survive; it’s much easier to find food, shelter, and other necessities with a group than alone. Deprived of human contact, most people become lonely and emotionally distressed.

In a study appearing in the Feb. 11 issue of Cell, MIT neuroscientists have identified a brain region that represents these feelings of loneliness. This cluster of cells, located near the back of the brain in an area called the dorsal raphe nucleus (DRN), is necessary for generating the increased sociability that normally occurs after a period of social isolation, the researchers found in a study of mice. View Original Article»

Brain circuitry of positive vs negative memories discovered in mice

News

Prior to the new study, scientists suspected involvement of the circuits ultimately implicated, but were stumped by a seeming paradox. A crossroads of convergent circuits in an emotion hub deep in the brain, thebasolateral amygdala, seem to be involved in both fear and reward learning, but how one brain region could orchestrate such opposing behaviors – approach and avoidance – remained an enigma. How might signals find the appropriate path to follow at this fork in the road? View Original Article»

Neurons that tell good from bad identified

News

MIT scientists, including one of Indian-origin, have identified two populations of neurons in the amygdala that process positive and negative emotions.

These neurons relay the information to other brain regions that initiate the appropriate behavioral response, said neuroscientists from Massachusetts Institute of Technology’s Picower Institute for Learning and Memory.

“How do we tell if something is good or bad? Even though that seems like a very simple question, we really don’t know how that process works,” said senior study author Kay Tye, the Whitehead Career Development Assistant Professor in the Department of Brain and Cognitive Sciences. View Original Article»

How the brain tells good from bad

News

MIT-emotional-circuits

Eating a slice of chocolate cake or spending time with a friend usually stimulates positive feelings, while getting in a car accident or anticipating a difficult exam is more likely to generate a fearful or anxious response.

An almond-shaped brain structure called the amygdala is believed to be responsible for assigning these emotional reactions. Neuroscientists from MIT’s Picower Institute for Learning and Memory have now identified two populations of neurons in the amygdala that process positive and negative emotions. These neurons then relay the information to other brain regions that initiate the appropriate behavioral response.

The study represents a significant step in understanding how the brain assigns emotions to different experiences, says senior study author Kay Tye, the Whitehead Career Development Assistant Professor in the Department of Brain and Cognitive Sciences. View Original Article»

Study Reveals Brain Activities Related To Positive And Negative Perception

News

Brain circuit mechanisms that can explain how positive and negative perceptions occur have been discovered by neuroscientists. The two brain activities found by experts showed the opposing events that happen following fear and reward-anticipation.

The researchers used advanced optical-gentical devices that can specify the brain activities in mice after a given situation. The study was funded by the National Institutes of HealthView Original Article»