Nine MIT researchers win Sloan Research Fellowships

News, Press Releases

MIT researchers specializing in neuroscience, chemistry, mathematics, and ocean sciences are among 126 selected.

Three neuroscientists, three chemists, two mathematicians, and an ocean scientist from MIT are among the 126 American and Canadian researchers awarded 2014 Sloan Research Fellowships, the Alfred P. Sloan Foundation announced today.

New MIT-affiliated Sloan Research Fellows are: Gloria B. Choi, an assistant professor of brain and cognitive sciences; Mircea Dinca, an assistant professor of chemistry; Mehrdad Jazayeri, an assistant professor of brain and cognitive sciences; Jeremiah A. Johnson, an assistant professor of chemistry; Kristopher Karnauskas, an associate researcher at the Woods Hole Oceanographic Institution; Bradley Olsen, an assistant professor of chemical engineering; Charles Smart, an assistant professor of mathematics; Jared Speck, an assistant professor of mathematics; and Kay Tye, an assistant professor of brain and cognitive sciences.

Awarded annually since 1955, Sloan Research Fellowships are given to early-career scientists and scholars whose achievements and potential identify them as rising stars among the next generation of scientific leaders. This year’s recipients are drawn from 61 colleges and universities across the United States and Canada… View Original Article»

Kay Tye Named to Tech Review’s Top-Innovators List

News, Press Releases

Today, MIT Technology Review revealed its annual list of Innovators Under 35. For more than a decade, the publication has recognized a list of exceptionally talented technologists whose work has great potential to transform the world.

For her work in biotechnology and medicine, Kay Tye, an assistant professor of brain and cognitive sciences and a member of the Picower Institute for Learning and Memory, has earned a spot on that list.

Tye pioneered the manipulation of specific projections in the brain. Specifically, she was the first to publish the demonstration, characterization, and application of both excitation and inhibition of specific neural pathways, or populations of synapses. Her work is said to have revolutionized the field of neuroscience by establishing causal relationships between specific populations of synapses and behavior.

“Over the years, we’ve had success in choosing young innovators whose work has been profoundly influential on the direction of human affairs,” the Technology Review’s editor-in-chief and publisher Jason Pontin said. “Previous winners include Larry Page and Sergey Brin, the cofounders of Google; Mark Zuckerberg, the cofounder of Facebook; Jonathan Ive, the chief designer of Apple; and David Karp, the creator of Tumblr. We’re proud of our selections and the variety of achievements they celebrate, and we’re proud to add Kay Tye to this prestigious list.”… View Original Article»

Distinct Amygdala Projections Control Opposing Behavioral Outputs

News

Monday Night Neuroscience Seminars – Kay Tye, MIT – “Distinct Amygdala Projections Control Opposing Behavioral Outputs”

The ability to differentiate between positive and negative environmental stimuli is critical to an animal’s survival. However, the neural circuits that endow the brain with the ability to differentiate positive and negative motivationally significant stimuli have been difficult to disentangle and represent one of the most important fundamental neuroscience questions today.

The development and application of optogenetic approaches has allowed us to probe the causal relationships between activity in specific circuit elements and animal behavior relevant to psychiatric disease states such as anxiety, addiction and depression. In this seminar, Kay Tye will discuss her research on the corticolimbic circuits that mediate valence processing using a multidisciplinary approach involving optogenetic, electrophysiological, pharmacological and imaging techniques… View Original Article»

Shining Light on Madness

News

Shining Light on Madness

Drugs for psychiatric illnesses aren’t very effective. But new research is offering renewed hope for better medicines.

Novartis’s research lab in Cambridge, Massachusetts, a large incubator-like piece of equipment is helping give birth to a new era of psychiatric drug discovery. Inside it, bathed in soft light, lab plates hold living human stem cells; robotic arms systematically squirt nurturing compounds into the plates. Thanks to a series of techniques perfected over the last few years in labs around the world, such stem cells—capable of developing into specialized cell types—can now be created from skin cells. When stem cells derived from people with, say, autism or schizophrenia are grown inside the incubator, Novartis researchers can nudge them to develop into functioning brain cells by precisely varying the chemicals in the cell cultures.

They’re not exactly creating schizophrenic or autistic neurons, because the cells aren’t working within the circuitry of the brain, but for drug-discovery purposes it’s the next best thing. For the first time, researchers have a way to directly examine in molecular detail what’s going wrong in the brain cells of patients with these illnesses. And, critically for the pharmaceutical company, there is now a reliable method of screening for drugs that might help. Do the neurons look different from normal ones? Is there a flaw in the way they form connections? Could drugs possibly correct the abnormalities? The answer to each of these questions is a very preliminary yes… View Original Article»

Author: David Rotman

Why map brains?

News

How could we benefit from better brain maps?

‘With deep brain stimulation (DBS), you’re just poking around in the dark. Stimulating brain cells with light probes rather than electrical DBS probes would be a marked improvement. We can identify targets for more effective treatments, with fewer side effects, by using these new light-based tools to study specific elements in brain circuits.

‘However, we have to do a lot more research to see how well the brain tolerates being genetically engineered with light-reactive proteins. It’s frightening to put something in your brain when you don’t yet know what the long-term effects are.’… View Original Article»

A Common Brain Pathway for Anxiety and Social Behavior

News

MIT neuroscientist Kay Tye finds a discrete brain circuit that controls social interaction, which is impaired in many brain disorders.

Impaired social interaction is a common feature in autism, schizophrenia, depression, and anxiety, and it contributes to many of the problems that people with these conditions face. That is particularly true for adolescents with autism spectrum disorder, of whom about 40 percent are also diagnosed with anxiety.

A new study from Kay Tye’s laboratory at MIT found a circuit in the brain that might explain the link between impaired social interaction and anxiety in so many disorders. The circuit connects the amygdala, well known for its role in anxiety, with the hippocampus, important for learning, memory, and emotional responses.

Recently, the Tye Lab found that a discrete circuit connecting a subregion of the amygdala (the basolateral amygdala, or BLA) with the ventral hippocampus (vHPC) controlled anxiety. Activating it increased anxiety; inhibiting it decreased anxiety. In the latest study, the lab focused on this same circuit’s ability to modulate social behavior. Both studies were led by research associate Ada Felix-Ortiz… View Original Article»

Creative Minds: Trying to Curb Those Sugar Cravings

News

Creative Minds Trying to Curb hose Sugar Cravings

It’s that time of year again: holiday parties and family feasts! One of the most frequently made—and most often broken—New Year’s resolutions is to follow a sensible diet.

All goes well until you catch sight of a cupcake or smell some cookies fresh out of the oven. Sensory cues trigger cravings that crumble resolve and, before you know it, you’re on a sugar high.

Actually, from a biological perspective, it’s not a fair fight. Once desires and preferences are hard-wired in the brain, people have difficulty changing their habits. But one of 2013 recipients of the NIH Director’s New Innovator Award, Kay Tye of the Massachusetts Institute of Technology (MIT), Cambridge, MA, is up for the challenge. In a high-risk, high-reward research project, she’s trying to find ways to control food cravings by reprogramming the brain, where the behavior begins.

Tye says her interest in the human brain began when she was a freshman at MIT and met H.M.—perhaps the most iconic patient in the history of brain research. H.M. was intriguing because experimental brain surgery had left him unable to form new memories, yet the old ones remained intact—a sign that there are multiple memory systems at work in the human brain. From that point on, she knew she wanted to study neuroscience, specifically memory. She began with emotional memories, including those associated with food, images, and songs. But what intrigued her the most was how emotional memories could affect health and disease… View Original Article»

Author: Dr. Francis Collins

Dissecting neural circuits underlying behaviors relevant to psychiatric disease in animal models

Events

Kay Tye gave a talk at Harvard University: “Dissecting neural circuits underlying behaviors relevant to psychiatric disease in animal models”.

The ability to differentiate between positive and negative environmental stimuli is critical to an animal’s survival.  However, the  neural circuits that endow the brain with the ability to differentiate positive and negative motivationally significant stimuli have been difficult to disentangle and represent one of the most important fundamental neuroscience questions today. The development and application of optogenetic approaches has allowed us to probe the causal relationships between activity in specific circuit elements and animal behavior relevant to psychiatric disease states such as anxiety, addiction and depression.  In this seminar, Kay Tye will discuss her research on the corticolimbic circuits that mediate valence processing… Event Link»

Three from MIT win NIH grants

News, Press Releases

Boyden, Ting and Tye receive grants for innovative medical research.

Three MIT faculty members have been awarded National Institutes of Health (NIH) grants designed to promote innovative biomedical research.

The Institute’s recipients of these NIH grants are Edward Boyden, an associate professor of biological engineering and brain and cognitive sciences; Alice Ting, the Ellen Swallow Richards Associate Professor of Chemistry; and Kay Tye, an assistant professor of brain and cognitive sciences and member of MIT’s Picower Institute for Learning and Memory.

The NIH is awarding approximately $123 million to 78 researchers across the country through its High Risk High Reward program, supported by the NIH Common Fund, which funds innovative and risk-taking research programs. The awards are divided into three categories: the NIH Director’s Pioneer, New Innovator and Transformative Research awards.

Tye, who is receiving a New Innovator Award, plans to study the obesity epidemic from the source of the problem: the compulsive consumption of unhealthy foods, such as those high in sugar. To develop a potential therapy to prevent craving from leading to compulsive behavior, she plans to use calcium imaging and electrophysiological recording data to identify the neural signature of craving. Once this neural signature of a craving state is identified, she plans to prevent the switch from craving to compulsion by transiently inhibiting the critical circuit elements using optogenetic manipulations. This research could lead to the identification of novel targets and new paradigms for obesity treatment that involve noninvasive strategies for neural manipulation such as focal ultrasound or transcranial magnetic stimulation… View Original Article»

With NIH grant, Kay Tye will take on obesity

News, Press Releases

The MIT professor has earned a 2013 NIH Director’s New Innovator Award to further her obesity research.

MIT assistant professor of neuroscience Kay M. Tye has studied the brain circuits underlying addiction, anxiety and depression — major problems to the health of individuals and society. Now she wants to apply her training, and her own innovative techniques, to obesity research.

“Obesity is linked to the neural circuitry of the other behaviors but it may be the most pressing problem because it is the most prevalent and it is increasing,” Tye says. “Our currently available treatments for obesity are ineffective and completely insufficient for the problem that faces our society.”

So Tye proposed a strategy to discover the neural circuits underlying obesity and then reprogram them to eliminate obsessive craving and consumption. The proposal was bold, creative and risky — but it was just the kind of high-stakes project the National Institutes of Health (NIH) seeks to support with its Director’s New Innovator Award.

Now, Tye has been named a recipient of the NIH Director’s New Innovator Award for 2013 and will receive $1.5 million over the course of five years to work on her novel approach to obesity research… View Original Article»

Author: David Vaughn

Brain circuit can tune anxiety

Press Releases

Brain circuit can tune anxiety

New findings may help neuroscientists pinpoint better targets for antianxiety treatments.

Anxiety disorders, which include posttraumatic stress disorder, social phobias and obsessive-compulsive disorder, affect 40 million American adults in a given year. Currently available treatments, such as antianxiety drugs, are not always effective and have unwanted side effects.

To develop better treatments, a more specific understanding of the brain circuits that produce anxiety is necessary, says Kay Tye, an assistant professor of brain and cognitive sciences and member of MIT’s Picower Institute for Learning and Memory.

“The targets that current antianxiety drugs are acting on are very nonspecific. We don’t actually know what the targets are for modulating anxiety-related behavior,” Tye says.

In a step toward uncovering better targets, Tye and her colleagues have discovered a communication pathway between two brain structures — the amygdala and the ventral hippocampus — that appears to control anxiety levels. By turning the volume of this communication up and down in mice, the researchers were able to boost and reduce anxiety levels… View Original Article»

Author: Anne Trafton

From the frontline: 30 something science

News

What’s being female got to do with anything, ask the scientists who are starting labs and having kids.

Being five months pregnant comes with a series of concessions: no booze, no sushi, no double-shot espressos. Less appreciated, perhaps, is the havoc it can wreak on a breakdancer’s moves. “My dancing is definitely limited now,” says Kay Tye, neurobiologist, award-winning b-girl and assistant professor at the Picower Institute for Learning and Memory at the Massachusetts Institute of Technology (MIT) in Cambridge. “I can’t do windmills — I can’t do anything that might cause me to fall. Which is, like, everything.”

It is one of the few limitations that Tye, 31, has been willing to accept. Striving to make her mark in optogenetics, one of the hottest fields in neuroscience, Tye thought nothing of working past midnight, getting by on four or five hours sleep a night and maintaining a constant, transcontinental travel schedule. She has had to dial back a little in recent weeks, and she knows that life may change further once her daughter is born. But she is ready. “I’ve been preparing for this my entire life,” she says. “I chose a career path that’s family friendly.”

An assistant professorship at MIT, where the tenure rate hovers at around 50% and the faculty is still about 80% male, may not strike many as particularly family friendly. But Tye, the daughter of a theoretical-physicist father and a biochemist mother, grew up in her mother’s lab, where she was paid 25 cents per box to rack pipette tips. With her mother as a role model, Tye says that she was in her teens before it occurred to her that her gender could hold back her career. “And by then, my brain was already fully formed,” she says with a smile… View Original Article»

Authors:  Heidi Ledford,  Anna Petherick,  Alison Abbott,  and Linda Nordling

Depression Eraser

News

Stimulating dopamine-releasing neurons immediately extinguishes depression in mice.

MIT and Stanford University researchers recently pinpointed brain cells that could be new targets for treating depression, which affects an estimated one in 10 Americans. By stimulating these cells to deliver dopamine to other parts of the brain, the researchers were able to immediately eliminate symptoms of depression in mice. They also induced depression in normal mice by shutting off the dopamine source.

“The first step to achieving a new era of therapy is identifying targets like these,” says Kay Tye, an assistant professor of brain and cognitive sciences at MIT and a member of MIT’s Picower Institute for Learning and Memory. She says she hopes the fact that this target exists “motivates drug companies to revitalize their neuroscience research groups.”

Many depressed patients are prescribed drugs, including Prozac, that boost the brain chemical serotonin. However, these require four to six weeks to take effect, suggesting that serotonin may not be part of the brain system most responsible for depression-related symptoms, Tye says. Finding more specific targets, rather than dousing the whole brain in chemicals, is the key to developing better therapies, she believes… View Original Article»

Author: Anne Trafton